

Effect of Carbonate on U(VI) Solubility in WIPP Brine

J.- F. Lucchini¹,

S. Ballard², H. Khaing², M. Borkowski¹, S. Pepper¹, M. K. Richmann¹, D. T. Reed¹

¹Los Alamos National Laboratory, Earth and Environmental Sciences Division, Carlsbad, NM USA

²Carlsbad Environmental and Monitoring Research Center, New Mexico State University, Carlsbad, NM USA

INTRODUCTION

Carbonate complexation is of major importance in uranium environmental chemistry [1]. The goal of our research was to experimentally determine the realistic contribution of carbonate complexation to the long-term solubility of U(VI) in the Waste Isolation Pilot Plant (WIPP). The solubility of U(VI) in two WIPP simulated brines (GWB and ERDA-6) was investigated in long-term experiments (more than 330 days), as a function of pC_{H+} (6-11) and in the presence of two carbonate concentrations (2×10⁻³ M and 2×10⁻⁴ M), using an oversaturation approach. Data are compared with similar experiments performed in carbonatefree brines [2]. These experimental results were modeled to give us a better understanding of the brine chemistry at high pC_{H+}, and to try to establish the relative contribution of hydrolysis and carbonate complexation to U(VI) solubility as a function of pC_{H+} in our high ionic strength brines.

pC_{H+} MEASUREMENT in BRINES

The measurement of hydrogen ion concentration (pC_{H+}) is made difficult by the high ionic strength and buffer capacity of brine components. The Gran-type titrations were used to establish a correction factor (K) for the specific pH electrode and brine according to the following general equation:

Brine	Correction factor, K		
ERDA-6	0.94 ± 0.02		
GWB	1.23 ± 0.01		

Component	ERDA-6		GWB			
	g/L	м	g/L	м		
NaCl	248.6	4.254	167.8	2.874		
MgCl ₂ .6H ₂ O	3.667	0.018	193.4	0.953		
Na ₂ SO ₄	22.52	0.159	23.61	0.166		
NaBr	1.074	0.010	2.565	0.025		
Na2B407.10H20	5.7	0.015	14.03	0.037		
KCI	6.869	0.092	32.57	0.437		
LICI	-	-	0.174	0.004		
CaCl ₂ .2H ₂ O	1.672	0.011	1.896	0.013		
onic strength (M)	4.965		6.839			
Density (g/mL)	1,183		1.216			

ERDA-6 - Energy Research and Development Administration Well 6 represents the fluids in Castile brine reservoirs GWB - Generic Weep Brine represents brine from the Salado Formation

REFERENCES

D.L. Clark et al., Chem.Rev. 95, 25 (1995).
 J.F. Lucchini et al., accepted in J. Alloys Compd. (2007).
 Skockwareb, The Geochemist's Workbench, www.rcckware.com,
 P. Diaz Arccas, B. Grambow, Geochimica et Cosmochimica Acta 262, 245 (1994).
 L. Morss, N. Edelstein, J. Fuger, The Chemistry of the Actinide and Transactinide Elements, 3st ed. Springer, Volume 4 (2006).

ACKNOWLEDGEMENTS

This work was preformed in the New Mexico State University, Carlsbad Environmental Monitoring and Research Center. This research was sponsored by the US Department of Energy, Carlsbad Field Office. This work supports the ongoing recertification activities of the WIPP repository, which is the only operating U.S. repository for transuranic waste. EXPERIMENTAL APPROACH : OVER-SATURATION IN CARBONATE BRINES AS FUNCTION OF pCH+

Data for 337 days of the experiments are presented.

Key Experimental Parameters

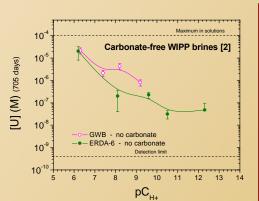
- Carbonate removed initially from brines by acidification of the brines and slow "pumpdown" of the above atmosphere in a vacuum chamber.
- Anoxic nitrogen-controlled atmosphere.
 Adjusted pC_{H+} between 6 and 11 with low
- carbonate NaOH. • Addition of carbonate in solutions to desired
- concentration (2×10⁻³ M or 2×10⁻⁴ M).
 Initial addition of uranyl spiked brine: [U] =
- Initial addition of uranyl spikes $1.5 (\pm 0.3) \times 10^{-5}$ M.
- Temperature of 25 (±3) °C.

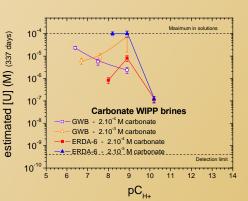
Over-saturation Experiments

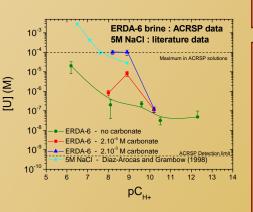
 Uranium was added sequentially to the solutions until a concentration equilibrium was achieved and precipitation was observed.
 Second addition of uranyl spiked brine:

 $[U] = 1.0 (\pm 0.3) \times 10^{-4} \text{ M.}$ • Yellow precipitates were then

observed in all solutions but in GWB at $pC_{H+} = 6.7$ (no precipitate) and in ERDA-6 at $pC_{H+} = 10.2$ (white precipitate).


Analytical Technique


Los Alamos


LA-UR-07-5377

 Total uranium concentrations determined by ICP-MS in filtered aliquots (30,000 Dalton).

- Detection limit is 5×10⁻¹⁰ M, due to the necessary dilution of the high salt-concentrated samples.
- A technique to measure low amount of carbonate (~10⁻⁵M) in solution is under development in our laboratory.

EXPERIMENTAL RESULTS

The measured solubility was approximately 10-5 M or less at all pC_{H+} values in both brines when the total carbonate concentration was 2×10⁻⁴ M. This was similar to the solubility observed in carbonate-free brines [2], with the exception of ERDA-6 at pC_{H+} =9. In this case, the presence of carbonate increased the uranium concentration by nearly two orders of magnitude. At a total carbonate concentration and in GWB at $pC_{H+} \ge 8$. These uranium concentrations in the presence of carbonate were at least one order of magnitude higher than in the absence of carbonate at a fixed pC_{H+} (data reported in our previous study [2]). This clearly demonstrates a carbonate complexation effect over hydrolysis. At $pC_{H+} = 10.2$ in ERDA-6, the measured uranium concentrations in the presence of carbonate were similar (about 10⁻⁷ M) to the ones collected in the absence of carbonate [2]. This establishes the predominance of hydrolysis at that pC_{H+} value. Our data were compared with the closest published work, performed in NaCl by Diaz Arocas and Grambow [4]. The presence of carbonate and the absence of compounds other than NaCl in their solutions may explain the difference in uranium solubilities.

MODELING

Modeling was performed using the Geochemist's Workbench program [3]. Precipitation, when experimentally observed, was confirmed by the calculations. The model predicts that the uranyl chemistry is dominated by the trimer (UO₂)₃(OH)₇⁻ in carbonate-free brines. In the presence of 200µM carbonate, the major uranyl species in solution are expected to be (UO₂)₂(CO₃)₄(OH)₃⁻ at the lower range of investigated pC_{H+} and UO₂(CO₃)₃⁴ at pC_{H+}>7. For higher carbonate concentration, the triscarbonato uranyl complex is responsible for the relatively high uranium concentration in solutions. The uranium profiles obtained by the experiments are close to the trends estimated by modeling, with the exception of GWB at pC_{H+} =9: the solubility.

CONCLUSION

These data help establish the effect of carbonate on the solubility of uranyl in WIPP-specific brines. In all cases, except at high pC_{H+} (>10), the presence of carbonate increased the uranium solubility by forming mostly the triscarbonato uranyl complex. This was expected according to the literature [5], and the modeling performed with the Geochemist's Workbench program [3]. The uranium concentrations obtained in the experiments are still below current WIPP Performance Assessment solubility assumption of 10⁻³ M. At pC_{H+} ≥10, the uranium solubility dropped down to values close to 10⁻⁷ M; similar to the carbonate-free systems previously studied [2]. These experimental data are the first to determine the pC_{H+} boundaries of the relative contribution of hydrolysis and carbonate complexation to U(VI) solubility in WIPP brines.